External links

Alma Mater
Otto-von-Guericke-Uni
Brandeis
workplace

Collaboration

Mikhail Tsyganov
Klaus Kassner
Vicenç Méndez
Werner Horsthemke

Acknowledgments

RFBR (PФФИ)
DAAD
DFG
NSF

Department of Continuum Mechanics
Computing Centre of the Russian Academy of Sciences
Vavilova 40, 119333 Moscow, Russia





list of publications

Projects

Pattern formation in reaction-diffusion systems: weakly nonlinear analysis and amplitude equations
Wave propagation in reaction-diffusion systems: piecewise linear models and analytical solutions




Recent papers

Large Turing patterns and Newell-Whitehead-Segel amplitude equation, E. P. Zemskov, accepted in Phys. Uspekhi
translated from

Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo, M. A. Tsyganov, G. R. Ivanitsky, E. P. Zemskov, Phys. Rev. E 89, 052907 (2014) [preprint]

Turing instability in reaction-diffusion systems with nonlinear diffusion, E. P. Zemskov, J. Exp. Theor. Phys. (JETP) 117, 764-769 (2013) [link] [paper in Russian]
translated from

Turing space in reaction-diffusion systems with density-dependent cross diffusion, E. P. Zemskov, K. Kassner, M. J. B. Hauser, W. Horsthemke, Phys. Rev. E 87, 032906 (2013) [preprint]




Selected papers

Nonlinear analysis of a reaction-diffusion system: Amplitude equations, E. P. Zemskov, J. Exp. Theor. Phys. (JETP) 115, 729-732 (2012) [link] [paper in Russian]
translated from

Amplitude equations for reaction-diffusion systems with cross diffusion, E. P. Zemskov, V. K. Vanag, I. R. Epstein, Phys. Rev. E 84, 036216 (2011) [link] [draft] (Sec. II and III) [draft] (App. A)

Speed of traveling fronts in a sigmoidal reaction-diffusion system, E. P. Zemskov, K. Kassner, M. A. Tsyganov, I. R. Epstein, Chaos 21, 013115 (2011) [preprint]

Wave propagation in a FitzHugh-Nagumo-type model with modified excitability, E. P. Zemskov, I. R. Epstein, Phys. Rev. E 82, 026207 (2010) [preprint] [draft]

Wavy fronts in reaction-diffusion systems with cross advection, E. P. Zemskov, K. Kassner, M. A. Tsyganov, M. J. B. Hauser, Eur. Phys. J. B 72, 457-465 (2009) [preprint]

Wavy fronts and speed bifurcation in excitable systems with cross diffusion, E. P. Zemskov, K. Kassner, M. J. B. Hauser, Phys. Rev. E 77, 036219 (2008) [preprint]

Stability of traveling fronts in a piecewise linear reaction-diffusion system, E. P. Zemskov, V. S. Zykov, K. Kassner, S. C. Müller, Nonlinearity 13, 2063-2076 (2000) [link]

A potential of the double well type at finite temperature, E. P. Zemskov, Russian Phys. J. 42, 47-52 (1999) [paper in English] [paper in Russian (without figures)]
translated from

Finite-temperature effective potential of a system with spontaneously broken symmetry, E. P. Zemskov, Russian Phys. J. 38, 638-640 (1995) [paper in English] [paper in Russian]
translated from




Updated May 14, 2014