External links
Alma Mater Otto-von-Guericke-Uni Brandeis workplace Collaboration Mikhail Tsyganov Klaus Kassner Vicenç Méndez Werner Horsthemke Acknowledgments RFBR (PФФИ) DAAD DFG NSF |
Department of Continuum Mechanics Computing Centre of the Russian Academy of Sciences Vavilova 40, 119333 Moscow, Russia list of publications Projects Pattern formation in reaction-diffusion systems: weakly nonlinear analysis and amplitude equations Wave propagation in reaction-diffusion systems: piecewise linear models and analytical solutions Recent papers Large Turing patterns and Newell-Whitehead-Segel amplitude equation, E. P. Zemskov, accepted in Phys. Uspekhi translated from Wave reflection in a reaction-diffusion system: Breathing patterns and attenuation of the echo, M. A. Tsyganov, G. R. Ivanitsky, E. P. Zemskov, Phys. Rev. E 89, 052907 (2014) [preprint] Turing instability in reaction-diffusion systems with nonlinear diffusion, E. P. Zemskov, J. Exp. Theor. Phys. (JETP) 117, 764-769 (2013) [link] [paper in Russian] translated from Turing space in reaction-diffusion systems with density-dependent cross diffusion, E. P. Zemskov, K. Kassner, M. J. B. Hauser, W. Horsthemke, Phys. Rev. E 87, 032906 (2013) [preprint] Selected papers Nonlinear analysis of a reaction-diffusion system: Amplitude equations, E. P. Zemskov, J. Exp. Theor. Phys. (JETP) 115, 729-732 (2012) [link] [paper in Russian] translated from Amplitude equations for reaction-diffusion systems with cross diffusion, E. P. Zemskov, V. K. Vanag, I. R. Epstein, Phys. Rev. E 84, 036216 (2011) [link] [draft] (Sec. II and III) [draft] (App. A) Speed of traveling fronts in a sigmoidal reaction-diffusion system, E. P. Zemskov, K. Kassner, M. A. Tsyganov, I. R. Epstein, Chaos 21, 013115 (2011) [preprint] Wave propagation in a FitzHugh-Nagumo-type model with modified excitability, E. P. Zemskov, I. R. Epstein, Phys. Rev. E 82, 026207 (2010) [preprint] [draft] Wavy fronts in reaction-diffusion systems with cross advection, E. P. Zemskov, K. Kassner, M. A. Tsyganov, M. J. B. Hauser, Eur. Phys. J. B 72, 457-465 (2009) [preprint] Wavy fronts and speed bifurcation in excitable systems with cross diffusion, E. P. Zemskov, K. Kassner, M. J. B. Hauser, Phys. Rev. E 77, 036219 (2008) [preprint] Stability of traveling fronts in a piecewise linear reaction-diffusion system, E. P. Zemskov, V. S. Zykov, K. Kassner, S. C. Müller, Nonlinearity 13, 2063-2076 (2000) [link] A potential of the double well type at finite temperature, E. P. Zemskov, Russian Phys. J. 42, 47-52 (1999) [paper in English] [paper in Russian (without figures)] translated from Finite-temperature effective potential of a system with spontaneously broken symmetry, E. P. Zemskov, Russian Phys. J. 38, 638-640 (1995) [paper in English] [paper in Russian] translated from Updated May 14, 2014 |